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Torsional flow: effect of second normal stress
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A rotational shear flow is examined in the bounded parallel-plate geometry for a
four-constant Oldroyd-type fluid which has a constant viscosity, and constant first
and second normal stress coefficients. A new type of Galerkin spectral technique
is introduced to solve the resulting two-dimensional stiff boundary value problem.
We show that even a small second normal stress difference can lead to a significant
increase (nearly 100 %) in the stability of the base torsional flow. Beyond a critical
Deborah number the secondary flow, in the form of travelling waves, appears to be
confined between two critical radii, in qualitative agreement with the experimental
results of Byars et al. (1994). The mechanism behind this instability is investigated
for dilute polymer solutions.

1. Introduction
Comparison of recent theoretical and experimental results in the area of viscoelas-

tic flows with curved streamlines has shown that the Oldroyd-B model does not
accurately describe the transition to secondary flow of a Boger fluid when the base
flow becomes unstable.

The key ingredients in the stability analysis of parallel-plate flows appear to be that
above a critical rotation rate of the upper (or lower) plate, the base torsional solution
becomes unstable to infinitesimal disturbances, and that the form of the resulting flow
in the region of linear instability is that of a travelling wave that appears to be confined
between two critical radii (a Hopf bifurcation leading to a time-dependent secondary
flow). This travelling wave takes the form of a spiral vortex (three-dimensional
non-axisymmetric disturbances) or concentric toroidal roll cells (two-dimensional
axisymmetric disturbances). The critical mode of the disturbance is highly dependent
on both the material properties and the flow geometry (Byars et al. 1994).

Avagliano & Phan-Thien (1996) showed that the consideration of a finite geometry
(as opposed to one extending infinitely in the radial direction) leads to a significant
improvement in this correlation. Taking into account all possible axisymmetric in-
finitesimal disturbances, they show that beyond a critical radius the amplitude of
the secondary flow changes by approximately three orders of magnitude. Hence the
secondary flow would appear only within a bounded region, rather than the entire
fluid domain. However, the model is still rather poor at predicting both the critical
rotation rate and the location of the resulting secondary flow. The predicted critical
rotation rate was much lower than the corresponding experimental values unless
a more suitable choice of relaxation time is made, for example that of Öztekin &
Brown (1993). Also, the critical radii between which toroidal travelling waves could
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be seen were much closer to the outer edge of the discs than the experiments of Byars
et al. (1994) have shown to be the case.

The difference between theory and experiment has mostly been attributed to the fact
that many, but not all, of the experimental fluids exhibit shear thinning, particularly of
the first normal stress coefficient Ψ1, over the relevant range of shear rates. Successful
attempts have been made to incorporate shear thinning in the theoretical models
applied to the parallel-plate geometry. For example, Byars et al. (1994) employed the
Chilcott–Rallison model to obtain a better approximation to the critical radii than the
overprediction offered by the Oldroyd-B model. Another limiting factor of theoretical
analyses to date has been the use of a single relaxation time in the constitutive model
of the extra stress S∗. Small-strain and small-amplitude oscillatory tests with these
Boger fluids by Quinzani et al. (1990) have shown that a spectrum of relaxation
times is necessary to adequately model the relaxation modulus in order to predict
rheological properties like dynamic viscosity and storage modulus. Their steady shear
flow results show that Ψ1 exhibits shear-thinning behaviour with increasing shear rate,
but also plateaus at intermediate shear rates, indicating that a constitutive model that
is nonlinear in stress may be necessary to capture the rheology of these fluids at
the intermediate shear rates at which rotational instability occurs. Olagunju (1994)
used a perturbation scheme to show that the effect of a free surface on stability is
minimal, since it is perturbed by only a small amount due to secondary flows. A
recent discussion of these difficulties as well as a review of elastic instabilities arising
from other viscometric flows is available in Shaqfeh (1996).

Since Boger fluids have been used in much of the experimental work (these fluids
have negligible second normal stress coefficient Ψ2), the importance of Ψ2 has not
been taken into account. Experimental measurement of the stress ratio Ψ2/Ψ1 has
proven exceedingly difficult for these fluids. Magda et al. (1991) have measured
this ratio as Ψ2/Ψ1 = −0.01 ± 0.01, indicating that if Ψ2 were non-zero, then a
more accurate measurement was beyond the capability of the experimental apparatus
employed. It has been demonstrated theoretically, at least in a semi-infinite geometry,
that a negative second normal stress coefficient leads to a stabilization of the base
flow and consequently secondary flow sets in at a higher critical rotation rate (Phan-
Thien & Huilgol 1985). We show in this paper that the introduction of even a small
Ψ2 (∼ −0.5%Ψ1) leads to a significant increase in the stability of the base flow
(approximately a 100% increase in critical rotation rate for small aspect ratio). The
critical radii of the disturbance flow are also significantly reduced, allowing a much
better correlation with the experimental results of Byars et al. (1994).

2. Flow geometry and governing equations
The parallel-plate geometry is modelled identically with the finite domain approach

used in Avagliano & Phan-Thien (1996). Two flat circular plates of radius R are
held horizontally a distance h apart as shown in figure 1, with a common vertical
axis through their centres. The fluid is contained between the plates by a frictionless
bounding surface at r∗ = R. With the bottom plate held fixed, the top plate is set
spinning at an angular velocity ω.

The governing field equations are

ρ
Dv∗
Dt

= −∇∗P∗ + ∇∗ · S∗ , ∇∗ · v∗ = 0, (2.1)

where ρ is the fluid density, D/Dt the material time derivative, P∗ the pressure field,
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Figure 1. Flow geometry.

and S∗ and v∗ the extra stress and the velocity fields, respectively. For an Oldroyd-type
constitutive equation, S∗ is given by S∗ = τ s∗ + τ p∗, a sum of solvent and polymeric
contributions to the total stress. The solvent contribution is simply the Newtonian
stress term τ s∗ = 2ηsD∗, while for the polymeric stress, we consider an adaptation to the
Oldroyd-eight-constant model, adopted in Phan-Thien & Huilgol (1985) to examine
the effect of Ψ2 on torsional flow stability. The polymeric stress for this model is
determined from a quasi-linear partial differential equation which is linear in τ p∗:

τ p∗+ λ

{
∂τ p∗
∂t

+ v∗ · ∇τ p∗ − L∗τp∗ − τ p∗LT∗
}

= 2ηp
{
D∗ − µλD2

∗ + 1
2
µλ tr

(
D2
∗
)
I
}
. (2.2)

Here we have λ as the sole relaxation time, L∗ = (∇∗v∗)T is the velocity gradient tensor,
with D∗ as its symmetric part, and the total viscosity η = ηs + ηp. The importance of
the extra parameter µ is revealed when considering a simple shear flow at constant
shear rate, where it can be found that the ratio of the second to the first normal stress
difference is given by

Ψ2

Ψ1

= −µ
4
, (2.3)

and consequently the addition of a second normal stress coefficient to the Oldroyd-B
model (µ = 0) can be accomplished with positive or negative values of µ. The second
normal stress coefficient in most polymer melts is negative, and is of the order 10 %
of the first normal stress coefficient. For these fluids, µ is of order unity. To compare
the theoretical predictions to the results of McKinley et al. (1991) and Byars et al.
(1994), a representative value of µ = 0.025 was chosen. This is within the range
determined experimentally for these fluids by Magda et al. (1991). Although four
parameters are employed in this model, we mention here that this is not the same
constitutive equation as the more widely known Oldroyd-four-constant model which
has been discussed in Bird, Armstrong & Hassager (1987).

For cylindrical polar coordinates (r∗, θ, z∗) we non-dimensionalize the variables as

z =
z∗

h
, r =

r∗

R
, t = ωt∗, vθ =

vθ∗

ωR
, vr =

vr∗

ωR
, vz =

vz∗

ωh
,

De = λω, ε =
h

R
, Re =

ρωhR

η
, β =

ηp

η
,

P = ε2
P∗

ηω
, τzz =

τpzz∗

ηω
, τrz = ε

τprz∗

ηω
, τrr = ε2

τprr∗

ηω
,

τθθ = ε2
τpθθ∗

ηω
, τrθ = ε2

τprθ∗

ηω
, τθz = ε

τpθz∗

ηω
.


(2.4)

Here De, the Deborah number, is a dimensionless rotation rate, being the ratio of
the fluid relaxation time to the characteristic time scale. A Weissenberg number, or
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dimensionless shear rate can be calculated from the rim shear rate as Wi = De/ε. Re
is the Reynolds number, β is the retardation parameter (β = 0 gives the Newtonian
case), and ε is the aspect ratio of the discs.

2.1. Boundary conditions

The no-slip boundary conditions on the upper and lower plates require that

vr = vz = vθ = 0 at z = 0,
vr = vz = 0, vθ = r at z = 1.

}
(2.5)

Symmetry conditions at the centreline dictate a zero radial and azimuthal velocity,
as well as zero shear stress there, i.e.

vr = vθ = 0, τrθ = τrz = 0 at r = 0. (2.6)

On the frictionless outer shell we have no flow through the boundary (v · n =
0, n = (1, 0, 0)), and the traction only acts in a direction normal to the boundary
(τ · n− τ : nnn = 0), i.e.

vr = 0, τrθ = τrz = 0 at r = 1. (2.7)

2.2. Base solution

We assume an inertialess flow regime to determine the secondary flow instabilities
due solely to the fluid elasticity. The governing equations may be written as

− ∂P

∂r
+

1

r

∂

∂r
(rτrr) +

∂τrz

∂z
− τθθ

r
+ (1− β)

[
ε2
∂

∂r

(
1

r

∂

∂r
(rvr)

)
+
∂2vr

∂z2

]
= 0, (2.8)

1

r2

∂

∂r

(
r2τrθ

)
+
∂τθz

∂z
+ (1− β)

[
ε2
∂

∂r

(
1

r

∂

∂r
(rvθ)

)
+
∂2vθ

∂z2

]
= 0, (2.9)

− ∂P

∂z
+ ε2

{
1

r

∂

∂r
(rτrz) +

∂τzz

∂z

}
+ (1− β)

[
ε4

1

r

∂

∂r

(
r
∂vz

∂r

)
+ ε2

∂2vz

∂z2

]
= 0, (2.10)

1

r

∂

∂r
(rvr) +

∂vz

∂z
= 0, (2.11)

= (τ )zz = β

{
2
∂vz

∂z
+ µDe

[(
∂vr

∂r

)2

+
(vr
r

)2

−
(
∂vz

∂z

)2

+
1

2

(
r
∂

∂r

(vθ
r

))2
]}

, (2.12)

= (τ )θz = β

{
∂vθ

∂z
− µDe

[
1

2
r
∂

∂r

(vθ
r

)(∂vr
∂z

+ ε2
∂vz

∂r

)
+
∂vθ

∂z

(
∂vz

∂z
+
vr

r

)]}
, (2.13)

= (τ )rz = β

{
∂vr

∂z
+ ε2

∂vz

∂r
− µDe

[(
∂vz

∂z
+
∂vr

∂r

)(
∂vr

∂z
+ ε2

∂vz

∂r

)
+

1

2
r
∂vθ

∂z

∂

∂r

(vθ
r

)]}
,

(2.14)
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= (τ )rθ = β

{
ε2r

∂

∂r

(vθ
r

)
− µDe

[
ε2r

∂

∂r

(vθ
r

)(∂vr
∂r

+
vr

r

)
+

1

2

∂vθ

∂z

(
∂vr

∂z
+ ε2

∂vz

∂r

)]}
,

(2.15)

= (τ )θθ = β

{
2ε2

vr

r
+ µDeε2

[(
∂vr

∂r

)2

−
(vr
r

)2

+

(
∂vz

∂z

)2

+
1

2ε2

(
∂vr

∂z
+ ε2

∂vz

∂r

)2
]}

,

(2.16)

= (τ )rr = β

{
2ε2

∂vr

∂r
+ µDeε2

[(vr
r

)2

+

(
∂vz

∂z

)2

+
1

2ε2

(
∂vθ

∂z

)2

−
(
∂vr

∂r

)2
]}

, (2.17)

where = (τ ) is the tensor operator on the right-hand side of (2.2).
The base solution for this problem is the viscometric solution

vr = vz = 0, vθ = rz, P = Pconst +
(

3
4
µ− 1

)
Deβr2,

τrθ = τrz = τzz = 0, τθz = βr, τθθ = 2Deβr2, τrr = 1
2
µDeβr2.

}
(2.18)

3. Linear stability analysis
In order to examine the stability of (2.18) to infinitesimal axisymmetric disturbances,

we assume the functional form

v = vo + δRe
[
e(σ/De)t u(r, z)

]
,

τ = τ o + δRe
[
e(σ/De)t σ(r, z)

]
,

P = Po + δRe
[
e(σ/De)tp(r, z)

]
,

 (3.1)

where Re [·] represents the real part, vo, τ o, and Po are the base solution, and σ is
the critical parameter representing the growth rate of the infinitesimal disturbance.
If Re (σ) < 0, the base solution is stable, Re (σ) > 0 implies the solution is linearly
unstable in this region of (De, ε, β, µ)-space, and Re (σ) = 0 supplies neutral stability
curves between the material and geometric parameters.

Substitution of (3.1) into the constitutive equations yields the perturbed stress field
as a function of the perturbed velocities. A stream function is introduced to eliminate
the mass conservation equation, and the pressure is eliminated from the momentum
equations as in Avagliano & Phan-Thien (1996). The resulting pair of governing
equations is of the form

(1 + σ) [1 + σ (1− β)]

{
ε2
∂

∂r

(
1

r

∂

∂r
(ruθ)

)
+
∂2uθ

∂z2

}
+Deβ

{
∂3ϕ

∂z2∂r
− 2 (2 + σ)

r

∂2ϕ

∂z2
+ ε2

∂

∂r

(
1

r

∂

∂r

(
r
∂ϕ

∂r

))}
−µDeβ

2

{
−Deσ 1

r2

∂

∂r

(
r5 ∂

∂r

(uθ
r

))
− De2 1

r2

∂

∂r

(
r5 ∂

∂r

(
1

r

∂ϕ

∂r

))
+(1 + σ)

[
∂3ϕ

∂z2∂r
− 4

r

∂2ϕ

∂z2
+ ε2

∂

∂r

(
1

r

∂

∂r

(
r
∂ϕ

∂r

))]}
= 0, (3.2)
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2Deβ (1 + σ) (2 + σ)
∂2uθ

∂z2
+ 2De2β (3 + σ)

∂3ϕ

∂r∂z2
+ (1 + σ)2 [1 + σ (1− β)]

×
{

1

r

∂4ϕ

∂z4
+ 2ε2

∂

∂r

(
1

r

∂3ϕ

∂r∂z2

)
+ ε4

∂

∂r

(
1

r

∂

∂r

(
r
∂

∂r

(
1

r

∂ϕ

∂r

)))}
−µDeβ

2

{
(1 + σ)2

[
1

r4

∂

∂r

(
r5 ∂

2uθ

∂z2

)
+ ε2

∂

∂r

(
r
∂

∂r

(
1

r

∂

∂r
(ruθ)

))
−De

(
ε2
∂

∂r

(
r
∂

∂r

(
1

r

∂

∂r

(
r
∂ϕ

∂r

)))
+ r2 ∂

∂r

(
1

r3

∂

∂r

(
r2 ∂

2ϕ

∂z2

)))]
+4De (1 + σ)

[
∂3ϕ

∂r∂z2
− 1

r

∂2ϕ

∂z2

]}
= 0, (3.3)

with

ur = −1

r

∂ϕ

∂z
, uz =

1

r

∂ϕ

∂r
. (3.4)

Examination of (3.3) reveals that the differential equation is third order in r for uθ ,
whilst there are only two radial boundary conditions for this variable. Two methods
were developed for overcoming this problem. The first method involves eliminating the
term involving ∂3uθ/∂r

3 between equations (3.2) and (3.3) to obtain a third equation
that can be solved in conjunction with (3.2). No extra boundary conditions need
to be supplied with this method, and it may be hoped that, due to removal of the
higher-order derivative, the numerical scheme employed will converge more quickly.
The drawback is that a term involving σ5 is created and this leads to significantly
larger matrix size in the matrix eigenvalue problem resulting from the numerical
scheme.

The second, preferred method involves using pole conditions to manufacture an
extra boundary condition. This will be a natural boundary condition and, while not
altering the eventual solution, a correct choice of pole condition will lead to an
improvement in the rate of convergence of the numerical solution to (3.2)–(3.3). A
discussion of pole conditions and their applicability can be found in Gottleib &
Orszag (1977).

4. Numerical schemes
The boundary conditions are appropriately determined already, due to the fact that

the two centreline conditions uθ = 0, σrθ = 0 at r = 0 are identical, and do not lead
to an overdetermined system. Expressed in terms of the stream function, the stress
and velocity boundary conditions at r = 0, 1 become

1

r

∂ϕ

∂z
=

∂

∂r

(
1

r

∂ϕ

∂r

)
= r

∂

∂r

(uθ
r

)
= 0.

The pole condition is derived from (3.2) in the limit r → 0:

∂

∂r

(
1

r

∂

∂r
(ruθ)

)
= 0 at r = 0.

The coupled partial differential equations are solved via a Galerkin spectral tech-
nique similar to that discussed in Avagliano & Phan-Thien (1996).
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The radial coordinate is stretched by the transformation x = 2r − 1 to the domain
[−1, 1], so that Chebyshev polynomials can be employed to resolve the solution in
the radial direction. The periodic nature of the boundary conditions in the vertical
direction allows the use of trigonometric polynomials in the axial coordinate. The
highest-order derivatives of each dependent variable are expressed in terms of this
infinite double sum in the manner of Zebib (1984). This ensures that all of the terms
in (3.2)–(3.3) are represented by a complete set of linearly independent functions:

∂5uθ

∂x3∂z2
=

∞∑
i=0

∞∑
j=0

αijTi (x) cos (jπz) , (4.1)

∂8ϕ

∂x4∂z4
=

∞∑
i=0

∞∑
j=0

βijTi (x) cos (jπz) . (4.2)

The appropriate boundary conditions are easily implemented by integrating the
above equations to obtain a set of trial functions for each dependent variable as

uθ =

∞∑
n=1

n∑
i=1

a(n(n−1)/2+i−1)Λn−i+1 (x)Πi (z) , (4.3)

ϕ =

∞∑
n=1

n∑
i=1

b(n(n−1)/2+i−1)Ψn−i+1 (x)Φi (z) , (4.4)

where Λ, Π , Ψ , and Φ satisfy all of the imposed boundary conditions.

4.1. Petrov–Galerkin scheme

Considering the set of coupled partial differential equations as being in the form
=1(uθ, ϕ; De, σ, β, ε, µ) = 0, =2 (uθ, ϕ;De, σ, β, ε, µ) = 0, respectively, where =1 and =2

are linear partial differential operators, and observing that the Nth partial sums of
(4.3) and (4.4),

uθN =

N∑
n=1

n∑
i=1

a(n(n−1)/2+i−1)Λn−i+1 (x)Πi (z) , (4.5)

ϕN =

N∑
n=1

n∑
i=1

b(n(n−1)/2+i−1)Ψn−i+1 (x)Φi (z) , (4.6)

each contain N (N + 1) /2 linearly independent terms, we can now introduce the
Petrov–Galerkin scheme by forming the residuals of =1 and =2, and taking appropriate
inner products, i.e.

〈=1 (uθN, ϕN) , uθmk〉 = 0, uθmk = Λm−k+1Πk,

〈=2 (uθN, ϕN) , ϕmk〉 = 0, ϕmk = Ψm−k+1Φk , m = 1, . . . , N, k = 1, . . . , m,

with

〈u (x, z) , v (x, z)〉 =

∫∫
S

w (x) u (x, z) v (x, z) dS =

∫ 1

0

∫ 1

−1

1

(1− x2)1/2
uv dx dz. (4.7)
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N Matrix dimension Dec (µ = 0) Dec (µ = 0.025)

11 396 1.671 2.771
12 468 — 2.667
13 546 1.663 2.648
14 630 1.661 2.708
15 720 1.661 2.678
16 816 — 2.648
17 918 — 2.637

Table 1. The slow convergence of the Petrov–Galerkin scheme.

4.1.1. Associated matrix eigenvalue problem

The Petrov–Galerkin scheme defined in (4.7) yields a third-order polynomial eigen-
value problem for the coupled system[

σ3B3 + σ2B2 + σB1 + A
]
v = 0, (4.8)

where A, B1, B2, B3 are all square matrices of size NT = N (N + 1). They are also
functions of the parameters De, β, ε, and µ. The coefficients of the trial functions are
stored in v, where

v =
(
a0, a1, .., aNT /2−1, b0, b1, .., bNT /2−1

)T
. (4.9)

In general B3 will be a singular matrix with NT/2 zero rows, whilst A is non-
singular. It thus becomes necessary to remove the infinite eigenvalues arising from
the singularity of B3. They are mapped to 0 using the transformation ν = 1/σ. The
infinite eigenvalues arise as a consequence of the discretization, and are not solutions
to the actual problem. Since their exact number is known

(
NT/2

)
, the resulting

eigenvalues can be discounted when determining the critical modes. Note that this
transformation preserves the positions of all eigenvalues with respect to the real
half-planes. Introducing w = (ν2v, νv, v)T , we have the generalized eigenvalue problem −B1 −B2 −B3

I 0 0
0 I 0

w = ν

 A 0 0
0 I 0
0 0 I

w. (4.10)

For fixed values of β, ε, and µ the critical Deborah number Dec of the torsional flow
can be determined from examination of the eigenvalues of (4.10). When Re (ν) < 0 the
viscometric solution is stable to infinitesimal disturbances, whilst Re (ν) > 0 implies
the solution will be unstable and criticality occurs when Re (ν) = 0 (this is valid since
all the bifurcations are Hopf bifurcations, i.e. the critical σ is complex).

4.1.2. Convergence of the Petrov–Galerkin scheme

The convergence of the scheme is quite poor. For µ = 0 four significant figure
accuracy was obtained at N = 15 (matrix size 720×720). However for µ = 0.025 only
one significant figure was possible at N = 17 (matrix size 918 × 918) as the scheme
oscillated between 2.6 and 2.7 rather than converging. Results for the Oldroyd-B
model and for a small Ψ2 are summarized in table 1. Here we have chosen β = 0.41
(the same value as used in the flow visualization experiments of McKinley et al. 1991
and Byars et al. 1994) and ε = 0.1.

The cause of the slow convergence can be understood in a general sense upon
examination of the functional form of the disturbance, or the actual nature and
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location of the toroidal roll cells that constitute the secondary flow. From figure 6 we
observe that the large-amplitude roll cells have moved toward the centre of the discs
at µ = 0.025 rather than remaining near the outer edge as they were for the Oldroyd-B
model. Mathematically this means that the Chebyshev polynomials employed in the
numerical scheme will require a greater number of modes in the radial direction to
converge (e.g. Peyret 1989).

4.2. Alternative Galerkin scheme

Owing to the differing orders of magnitude of the two length scales h and R in this
problem, a feature of stiff boundary value problems in general, and in particular
the difficulty in resolving the solution in the radial direction, the standard Galerkin
method seems an inefficient solution method. This is due to the fact that whilst a
high number of Chebyshev modes are required for convergence, the introduction of
each new mode necessitates the introduction of a higher-order Fourier mode in the
vertical direction and also all of the interactions of the modes of this order.

The order of approximation of the dependent variables in the standard Galerkin
scheme (4.5)–(4.6) is determined by the single integer parameter N. This new method
introduces three integer parameters to determine which of the terms in (4.3)–(4.4)
are included in each successive approximation to the spectral solution. Let Nr be
the highest-order mode in the radial direction, Nz be the highest-order mode in the
vertical direction, and Ni the number of modes to be included of order Nr and assume
for simplicity that Ni < Nz (usually Ni < 5 at convergence so this is a reasonable
assumption). Define the new approximation to (4.3)–(4.4) as

uθN =

[
Nz∑
n=1

n∑
i=1

+

Nr∑
n=Nz+1

I(n)∑
i=1

]
a(n(n−1)/2+i−1)Λn−i+1 (x)Πi (z) , (4.11)

ϕN =

[
Nz∑
n=1

n∑
i=1

+

Nr∑
n=Nz+1

I(n)∑
i=1

]
b(n(n−1)/2+i−1)Ψn−i+1 (x)Φi (z) , (4.12)

where I (n) is an integer function of Nr , Nz , and Ni with the following properties:

I (n+ 1) 6 I (n) , I (Nz + 1) = Nz − 1, I (Nr) = Ni, if Ni = Nr then I (n) = n.

Also note that if Ni = Nr this method reduces to the standard Galerkin scheme.
The significance of Nr , Nz , Ni and I is best represented pictorially in figure 2. The
convergence of this method relies on the absolute convergence of the series (4.3)–
(4.4), allowing the terms to be summed in any order. The absolute convergence is
guaranteed by the fact that uθ is at least C1 continuous, and ϕ is at least C2 continuous
(see Canuto et al. 1987).

4.2.1. Convergence characteristics – a model problem

To determine whether this method of term selection improves the rate of conver-
gence for this type of problem we re-examine the linear stability of the Oldroyd-B fluid
discussed in Avagliano & Phan-Thien (1996), for which the standard Galerkin scheme
has already provided critical Deborah numbers for linear instability (Dec = 1.661 at
ε = 0.1 and β = 0.41 to four significant figures). This is equivalent to the current
problem with µ = 0. To demonstrate that a larger number of Chebyshev modes are
required we begin table 2 with Nr = Nz = 7 and alternately increase Nz and then Nr

to 11, whilst holding Ni constant at 1. The standard Galerkin values with N = 7 and
N = 11 are included.
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¾1 ¼1

¾1 ¼2¾2 ¼1

¾Nz
 ¼1 ¾1 ¼Nz

¾n ¼1 ¾n – I(n) + 1 ¼I(n)

¾Nr
 ¼1 ¾Nr – Ni + 1 ¼Ni

¾1 ¼Nr

Figure 2. An illustration of the term selection of the alternative Galerkin scheme. The whole
triangle of terms is used by the standard Galerkin scheme for N = Nr . The terms selected by the
alternative scheme are bounded by the line.

Nr Nz Dec

7 7 1.8671
7 9 1.8672
7 11 1.8672
9 7 1.6973

11 7 1.6663
11 11 1.6715

Table 2. Convergence characteristics of an alternative Petrov–Galerkin scheme.

From the table it becomes obvious that increasing the order of approximation in
the radial direction has a far greater effect on the accuracy of Dec than increasing
the order in the axial direction, which has virtually no effect. The necessity of Ni for
rapid convergence is illustrated in figure 3, where the accuracy of the approximation
to the standard Galerkin scheme with N = 15 is examined. If Ni is held at 1 and
Nz is increased from 7 to 15, the scheme behaves quite poorly. In fact, by Nz = 12
a pseudo-solution has been reached where the successive approximations agree to six
significant figures, and it is only when Nz is increased to 15 that the scheme produces
the correct result. However, if Nz is held constant at 8, for example, then increasing
Ni from 2 up to 4 gives a solution to the standard Galerkin scheme which is accurate
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Figure 3. Convergence to the standard Galerkin solution with N = Nr = 15. The values for each
approximation are labelled Nz , Ni respectively.

to six significant figures, though it only requires half the number of terms. Thus, Ni is
required to introduce the modes which are of high order in the radial direction and
low order in the axial direction, and also to ensure that the scheme converges to the
actual solution.

4.2.2. Convergence for Ψ2 6= 0

The solution method is quite straightforward. With Nz and Ni held constant, Nr

is increased until the increment in Dec for successive values of Nr is negligible. Once
a large enough value of Nr has been reached, it is held fixed while Ni is increased.
For a large enough initial choice of Nz , the solution should converge to the actual
Dec. The accuracy of Dec can be verified by successively increasing Nz , Ni, and
Nr by 1 and examining the new approximation. Any significant difference in the
approximation to Dec would of course mean that not enough terms had been utilized
initially. The method is illustrated in table 3, with µ = 0.025. We found that Nz = 8
was more than a sufficient number of vertical modes for convergence for all aspect
ratios considered and also across a wide range of Ψ2. This phenomenon was also
observed in Öztekin & Brown (1993) whose one-dimensional analysis discretized in
the axial direction required as few as five trial functions for convergence of the
discrete spectrum. This number increased dramatically when attempting to resolve
the continuous spectrum. In Olagunju’s analysis of the effect of inertia on stability
of cone and plate flow (D. O. Olagunju 1996, personal communication) only four
trial functions were required for the convergence of the one-dimensional model of
axisymmetric secondary flow. Also, Ni = 3 or 4 was enough to guarantee 5 significant
figures of accuracy, once Nr had been increased to a sufficiently large value.

Obtaining the final entry in table 3 requires solving for 1272 eigenvalues for each De
until the critical value is determined, usually taking 5–6 iterations of a simple secant
method. The standard Galerkin scheme would require solving for 4920 eigenvalues
for each De. The QZ algorithm used to solve for the complex generalized eigenvalues
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Nr Nz Ni Dec

17 8 1 2.6370
21 8 1 2.6908
22 8 1 2.7306
25 8 1 2.7574
27 8 1 2.8256
30 8 1 2.7974
34 8 1 2.79938
35 8 1 2.79985
35 8 4 2.79981
36 8 1 2.79944
36 8 2 2.79933
36 8 3 2.79936
36 8 4 2.79936
37 8 4 2.79929
38 8 4 2.79943
39 8 4 2.79945
40 8 4 2.79945

Table 3. Convergence of the alternative Galerkin method.

requires O
(
15 (3NT )3

)
flops for each iteration (Golub & Van Loan 1983) and is

O
(
(3NT )2

)
in storage, so that the equivalent standard Galerkin solution for this

problem would take 64 times as long, assuming that storage space was available for
the system matrices.

In essence, the eigenvalue problem being solved is identical to that given in (4.10),
with the exception that 3 rows and columns are removed from the system matrices
for each term excluded in the approximations (4.11)–(4.12). This procedure will
infrequently lead to the production of eigenvalues with positive real part, due to
catastrophic cancellation. These spurious modes are easily distinguishable and can be
ignored in the solution process. This difficulty would not arise if the problem were a
non-homogeneous boundary value problem rather than an eigenvalue problem.

5. Results and discussion
Phan-Thien & Huilgol (1985) conducted a theoretical analysis of the effect of Ψ2

on torsional flow stability. The model they employed was restricted to an infinite
radial domain and admitted axisymmetric disturbances of von Kármán form only.
The predicted form of the disturbance was a single semi-infinite recirculation with a
critical Deborah number given by

Dec = 2π/(β [2 (6− µ) + β (2− µ) (4− 3µ)])1/2 (5.1)

Their findings were consistent with, for example, Giesekus (1966) and Sun & Denn
(1972) who agree that a negative Ψ2 has a stabilizing effect on the base solution. More
recent analysis by Shaqfeh, Muller & Larson (1992) for Taylor–Couette flow, in which
Ψ2 is introduced though a second-order fluid-type term, also concludes that negative
Ψ2 has a stabilizing effect on the base flow. The 4-mode Giesekus model employed
by Öztekin, Brown & McKinley (1994) also incorporates a small negative Ψ2 via the
introduction of a mobility parameter. However, there is also a large amount of shear
thinning in this model introduced through the same mobility parameter, so definitive
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Figure 4. Critical Deborah number as a function of the second normal stress difference parameter
µ for the current work, and also a comparison with Phan-Thien & Huilgol (1985). Here ε = 0.1,
and β = 0.41.

evidence of the effect of Ψ2 is not so easily obtained. It is now accepted that negative
Ψ2 stabilizes a wide variety of rotational flows (e.g. Larson 1992).

For small µ there is very little increase in Dec above that obtained for the Oldroyd-
B model using the result (5.1). Experimental evidence for polyisobutylene- and
polystyrene-based Boger fluids (Magda et al. 1991) suggest that Ψ2 is indeed small.
The combination of these results suggests that Ψ2 can be ignored when modelling
the rheology of these Boger fluids. Figure 4 illustrates the marked difference in the
stability with the inclusion of a radial bounding wall and allowance for arbitrary
axisymmetric disturbances.

There are clearly two regions in the neutral stability curve. A boundary layer exists
in the range −0.02 . µ . 0.03 where there is approximately a two-fold increase in
Dec. For µ & 0.03 the gradient of the solution curve is much lower. This transition
through the boundary layer has a dramatic effect upon the functional form of the
secondary flow. The solution of (4.12) gives the streamlines for the disturbance flow
in the form ϕN = ϕr + iϕi, where ϕr and ϕi are two real independent functions
that completely determine the nature of the secondary flow. Figure 5 reveals this
functional form for different values of the second normal stress difference parameter
µ. For µ = 0, we recover the Oldroyd-B model whose behaviour has been characterized
at the onset of linear instability in Avagliano & Phan-Thien (1996), and is shown
in figure 5 (a). Here several roll cells form near the outer edge and propagate either
radially inwards or outwards within this small banded region of the domain. Choosing
a value of µ = 0.025, just inside the boundary layer region the solution alters to that
shown in figure 5 (b). Here the general nature of the disturbance is the same, with
the formation of roll cells whose size scales approximately with the gap width of
the plates. However, the region in which the roll cells form has moved appreciably
towards the centre of the discs. In the theoretical analyses conducted on stability of
parallel-plate flow to date (e.g. Öztekin & Brown 1993 and Avagliano & Phan-Thien
1996 using the Oldroyd-B model, and Byars et al. 1994 using the Chilcott–Rallison
model) the main discrepancies with experimental results have been the prediction of
too low a value of Dec, and an incorrect prediction of the location of the region in
which the disturbance manifests itself. The addition of a small negative Ψ2 may then
possibly alleviate both of the problems somewhat in the finite domain. At µ = 0.035,
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Figure 5. ϕr (left) and ϕi (right), for (a) µ = 0, (b) µ = 0.025, (c) µ = 0.035, and (d) µ = 0.4.
All eigenvectors are determined with ε = 0.1 and β = 0.41.

just outside the boundary layer, the disturbance has radically altered form again
(figure 5 c). The roll cells have elongated and merged so that three of them cover the
entire fluid domain and the structure is qualitatively little different to figure 5(d) with
µ = 0.4.

It is also worth mentioning the effect of negative Ψ2 on Im (σ), which is important
in determining wave speed of the disturbances. As expected, Im (σ) is also significantly
altered for small µ. Using the representative example at β = 0.41 and ε = 0.1, we have
for the Oldroyd-B model Im (σ) = 0.89, whilst for µ = 0.025 we have Im (σ) = 1.21.
This represents an increase in the predicted wave speed which, considering the
experimental results of Byars et al. (1994), is again an improvement over the Oldroyd-
B model.

The area of greatest rheological interest when examining instability of Boger fluids
in torsional flow is the boundary layer region 0 < µ . 0.03. For the larger negative
values of Ψ2, which are a feature of more concentrated solutions of long-chain
polymers in a viscous solvent, another type of instability occurs known as edge
fracture. Here an axisymmetric indentation forms in the free surface at the plate
edges reducing the effective shear area. Tanner & Keentok (1983) have shown for a
second-order fluid that large negative Ψ2 contributes to edge fracture, whilst small Ψ2

inhibits edge fracture. A more refined analysis by Huilgol, Panizza & Payne (1993)
leads to the same conclusions.

A representative value of µ = 0.025 was selected to illustrate the solution properties
within the boundary layer region. At the onset of linear instability, the growth rate σ
has zero real part and is also found to have non-zero imaginary part. This indicates
a Hopf bifurcation, where the steady base flow is altered to include a time-periodic
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Figure 6. Time evolution of the first of two possible secondary flows, with roll cells travelling
radially outwards. The flow is shown at times (a) t = 0, (b) t = T/8, (c) t = T/4, (d) t = 3T/8, and
(e) t = T/2, where T is the period of oscillation. Here Dec = 2.8, ε = 0.1, and β = 0.41.

secondary flow. Substitution of ϕN into (3.1) reveals that two possible solutions exist
for this secondary flow corresponding to the complex-conjugate critical eigenvalues
obtained in (4.10). The flows are basically a set of axisymmetric roll cells which travel
either radially outwards (figure 6) or inwards (figure 7).

In the two flow visualization experiments conducted examining torsional flow
stability, McKinley et al. (1991) observed both types of secondary flow though
the roll cells began at the centre and outer edge of the discs as opposed to
the median radial location predicted. Byars et al. (1994), however, observed only
axisymmetric roll cells and non-axisymmetric spirals which appeared to travel out-
wards.

The current model is somewhat less sensitive to changes in aspect ratio than the
Oldroyd-B model (figure 8). This is due to the fact that the thickness of the boundary
layer is also a function of the aspect ratio and so the stabilizing effect will be different
for each geometry for the same value of µ. For example, at ε = 0.08, the solution
structure has already changed to one of larger extended roll cells. The experimental
values obtained for the onset of instability by McKinley et al. (1991, squares) and
Byars et al. (1994, circles) have been included for comparison. Also included is a
variant of the results of McKinley et al. (1991, triangles), used for experimental
comparison in Öztekin & Brown (1993) and Avagliano & Phan-Thien (1996). Here
the relaxation time for the Oldroyd-B model has been scaled to incorporate the
shear thinning occurring at the critical rotation rate. Essentially the scaling takes into
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Figure 7. Time evolution of the second of two possible secondary flows, with roll cells travelling
radially inwards. The flow is shown at times a) t = 0, b) t = T/8, c) t = T/4, d) t = 3T/8, and e)
t = T/2, where T is the period of oscillation. Here Dec = 2.11, ε = 0.05, and β = 0.41.

account the shear thinning of Ψ1 at higher shear rates,

λ(γ̇) =
Ψ1(γ̇)

2 (η(γ̇)− ηs)
.

The good agreement between the scaled experimental results of McKinley et al. (1991)
and the Oldroyd-B model is probably fortuitous since the results of Byars et al. (1994)
using the same Boger fluid would not scale so well. Also the functional form of the
disturbance is modelled quite poorly by the Oldroyd-B model and has been improved
by the inclusion of Ψ2. Since the experimental results are still 2–3 times as large as
those observed here, they only serve to illustrate that a more sophisticated multimode
model which captures the shear-thinning behaviour of the Boger fluids used in these
experiments as well as incorporating a small negative Ψ2 is required to make more
accurate predictions of the nature of these relatively simple viscoelastic fluids in
the simplest of geometries. Such progress has already been made in a semi-infinite
cone-and-plate geometry by Öztekin et al. (1994) using a four-mode Giesekus model
to more precisely match the rheology of their Boger fluid.

We do not include the theoretical results of Öztekin & Brown (1993), and of Byars
et al. (1994) in figure 8, since they were obtained by a linearized stability analysis
on a semi-infinite domain: given De and the rheological parameters, a form of the
disturbances, which involved a critical radius R∗, was postulated, and the resulting
eigenvalue problem was solved for the critical radius. Both sets of results (summarized
in figure 18 of Shaqfeh 1996), predict a critical value of De and the kinematics of
the flow at the onset of linear instability, but are only valid for a semi-infinite radial
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Figure 8. Critical Deborah number as a function of aspect ratio. β = 0.41 for all results, and
µ = 0.025 for the present work.

domain. The interpretation of the results for a finite domain is not clear. The difficulty
is similar to that encountered when interpreting the results of Phan-Thien (1983) for
the finite domain. Phan-Thien postulated the existence of axisymmetric disturbances
of von Kármán form, which were shown to exist at a critical value of De. The solution
cannot be generalized to the finite domain since the assumed form of the kinematics
cannot satisfy boundary conditions imposed at the outer radius. As such the result
serves as an indicator of the existence of instability in the finite domain, rather than
a solution for this domain.

Since the domain is semi-infinite r∗ must be rescaled by h, so that r = r∗/h. In the
case of the Oldroyd-B model, Öztekin & Brown (1993) found that for a given De,
the flow was unstable for all r > R∗crit. The interpretation of these results for a finite
domain seems clear. For a given experiment with dimensionless plate radius R0, the
critical value of De is determined from the neutral stability curve of R∗ vs. De with
R∗crit = R0 (Öztekin & Brown 1993; Shaqfeh 1996). However, at this critical value of
De the flow instability is predicted to lie outside the fluid domain, so the kinematics
of the solution for r > R∗crit give no information about the secondary flow instability
that develops in a finite domain. Only the critical value of De for a finite domain is
predicted with this model, though this also is not necessarily the case. Any secondary
flow resulting from linear instability must satisfy imposed boundary conditions at
R0. The instability determined by Öztekin & Brown (1993) from a radially localized
expansion will not necessarily satisfy these conditions.

For the Chilcott–Rallison model used in Byars et al. (1994) an extra parameter
L determining dumbbell extensibility (L → ∞ recovers the Oldroyd-B model) is
employed to incorporate shear thinning. The analysis is also conducted in the semi-
infinite domain. For a given value of De they also find that the flow is linearly
unstable beyond a critical radius r > R∗1 . However, due to the effect of shear thinning
of N1 the flow restabilized at a second critical radius R∗2 beyond which the viscometric
solution was still stable. For a given value of L determined by fluid rheology the
neutral stability curve of R∗ vs. De now contains a turning point at some minimum
value of De = De∗ where R∗1 = R∗2 = RC−R . The solution is then examined at the
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experimental value of Dec > De∗. The flow is already unstable at this value and the
disturbances are confined between the two critical radii R∗1 and R∗2 . However, the flow
surely must have gone unstable at an earlier Deborah number De∗ when R∗ = RC−R .
From the linearized stability analysis, De∗ is the critical Deborah number predicted
by the theory.

The interpretation for the finite domain is then similar to that for the Oldroyd-B
model. If R0 > RC−R then De∗ is the predicted critical De for the flow, and this value
will be greater than that predicted by the Oldroyd-B model. If R0 < RC−R then the
critical De is determined from the lower branch of the neutral stability curve R∗ vs. De
where R∗ = R∗1 . The kinematics of the linear instability solution will still lie outside
the fluid domain.

6. Mechanism behind the instability

Larson, Shaqfeh & Muller (1990) were the first to suggest that the mechanism
behind instability in these viscoelastic flows with curved streamlines was due to a
coupling between the disturbance velocity and base-state stress gradients leading
to a perturbation in the hoop stress τθθ . This perturbation is then able to drive
a secondary flow in a direction perpendicular to the streamlines of the base flow.
Subsequent energy analyses by Joo & Shaqfeh (1992) and Byars et al. (1994), and also
a micromechanical argument by Öztekin & Brown (1993) have confirmed that this
is indeed the primary mechanism for the instability. Effects such as the introduction
of shear thinning or the use of a spectrum of relaxation times only modify this
mechanism.

McKinley, Pakdel & Öztekin (1996) have recently postulated a simple criterion
applicable to a wide variety of geometries for determining the stability of dilute
polymer solutions. It is a criterion which relies for its success upon the mechanism
described above. However, the effect of Ψ2 was not included in the above analyses.

It is not clear why a very small negative Ψ2 influences the stability of the parallel-
plate system so dramatically. Mathematically, it is obvious that equations (3.2) and
(3.3) are singular in ε2 for the Oldroyd-B model (µ = 0). The introduction of a small µ
affects the highest-order derivative terms in the radial direction in a similar manner to
the aspect ratio ε. The relevant dimensionless coefficients are ε2 and µDe2β/2. From
figure 9 (a) we can see that µDe2β/2ε2 ∼ O (1) for a large range of ε with the rather
small value of µ = 0.025. Essentially, small Ψ2 is important for this model since the
extra terms which are introduced scale with the terms which are singular in the aspect
ratio. Hence, the wildly varying nature of the results may be a consequence of the
rheology of the particular four-constant model employed.

In order to establish the physical mechanism for the effect of Ψ2 on the stability of
the base flow, some simplifying assumptions must be made. It is not possible to allow
De to be arbitrarily large as was done in Öztekin & Brown (1993); however a similar
effect can be achieved by expanding uθ and ϕ as a regular perturbation series in β, the
retardation parameter. For an expansion around β = 0 an assumption must be made
about the dependence of De on β, since De → ∞ in the Newtonian limit β → 0. All
available theoretical evidence (see, for example (5.1), Phan-Thien 1983, and Olagunju
1994) for these models indicates that De ∼ O(β−1/2) as β → 0 , though it is enough
to assume this dependence and then check the perturbation solution against the full
numerical solution for small values of β.
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Expanding as

De =
De0

β1/2
, uθ = uθ0 + βuθ1 + . . . , ϕ = β1/2 [ϕ0 + βϕ1 + . . .] (6.1)

we find, first, for the Oldroyd-B model, that the modified stability equations of lowest
order become {
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By uniqueness, we have uθ0 = 0 from (6.2). The only elastic term (the underlined
term in (6.3)) is due solely to the coupling between the base-state shear stress τθz
and azimuthal velocity vθ and disturbance stream function ϕ0. The elastic term is
then convected into the radial component of the momentum equation, in agreement
with the previous analyses of instability. To check that the scaling is correct for De
in (6.1), the perturbation solution (represented by the circle at β = 0) is compared
to the full numerical scheme (dotted lines and symbols for β > 0) in figure 9 (b) by
plotting Dec/β

1/2 ∼ De0 against β for various values of the retardation parameter. As
expected, the full solution converges to the perturbation scheme in the limit β → 0
for both the Oldroyd-B model and the four-constant model. This also provides an
independent verification of the full numerical scheme.

The solution structure for µ 6= 0 is quite different. The lowest-order terms are
determined by solving the system
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The fundamental difference between this model and the Oldroyd-B model is that a
non-zero µ produces a coupling between the two equations. This coupling produces
a non-trivial zeroth-order term for the disturbance azimuthal velocity, i.e. uθ0 6= 0.
This forces a fundamental change in the nature of the solution, since the numerical
scheme shows that uθ is of the same order of magnitude as both the vertical and
radial velocities, even for very small values of µ. The coupling term in (6.4) is due
solely to the base-state second normal stress difference, which in this case is simply
−τrr . This shows that the existence of a small compressive stress acting across the
streamlines of the base flow is enough to significantly enhance stability.

7. Conclusions
The inclusion of a non-zero second normal stress difference has significantly in-

creased the difficulty of obtaining numerical solutions to the stability of torsional
flow of a viscoelastic fluid, even though the constitutive equations are still linear in
stress. We have presented a numerical scheme which improves the convergence of
a Galerkin scheme for geometries in which the differing length scales lead to stiff
boundary value problems. This method is valid for a broad range of homogeneous and
non-homogeneous linear boundary value problems and is not restricted to viscoelastic
fluid problems.

The inclusion of a negative Ψ2 was found to have a dramatic effect on stability
within a boundary layer region, though the general trend of improving stability is
in agreement with other authors. It is also possible to determine that the coupling
between the momentum equations caused by the introduction of a non-zero Ψ2 leads
to a profound change in the nature of the solution: a perturbation scheme in β showed
that the coupling of the stability equation produces a non-trivial zeroth-order term
for the disturbance azimuthal velocity, which is due solely to the base state second
normal stress difference. The stabilization relative to the Oldroyd-B model depends
on the aspect ratio ε. For small aspect ratios, it is quite dramatic (Dec changes from
1.6 to 2.8 at ε = 0.1) while at large aspect ratios it is less significant (Dec changes
from 8.1 to 8.8 at ε = 1).

While an improvement over the Oldroyd-B model, the current model is still inaccu-
rate in predicting the critical rotation rate for the onset of instability, and the general
location in which the instability is visible. A multimode model that also incorporates
shear thinning may be necessary to improve this correlation.

The computing facility of the Sydney Distributed Computing (SyDCom) Labora-
tory was used in obtaining the results reported in this paper.
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